Regret bound

Choose 𝐱(1),,𝐱(T)\mathbf{x}^{(1)},…,\mathbf{x}^{(T)} so that: i=1Tfi(𝐱(i))[min𝐱i=1Tfi(𝐱)]+ϵ\sum_{i=1}^T f_i (\mathbf{x}^{(i)}) \leq \left[\min_\mathbf{x} \sum_{i=1}^T f_i (\mathbf{x})\right] + \epsilon

Here ϵ\epsilon is called the regret of our solution sequence 𝐱(1),,𝐱(T)\mathbf{x}^{(1)},…,\mathbf{x}^{(T)}. Regret compares to the best fixed solution in hindsight.

We typically ϵ\epsilon to be growing sublinearly in TT.


#incomplete ****

Online regret bound


References:

  1. http://sbubeck.com/LecturesALL_Bubeck.pdf
  2. https://www.jmlr.org/papers/volume11/jaksch10a/jaksch10a.pdf
  3. https://arxiv.org/abs/2206.04640
  4. https://datascience.stackexchange.com/questions/62141/what-are-regret-bounds
  5. https://cs.adelaide.edu.au/~javen/talk/bounds_slide5.pdf